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Abstract. A new algebraic Bethe ansatz construction for the six-vertex model is formulated 
using intertwining vectors and local gauge transformations. A new set of eigenvectors and 
their associated eigenvalue equations are derived. This basis is well suited to connect 
vertex, SOS and RSOS models. Exact relations on a finite lattice between vertex and SOS 

models are proven with the help of the intertwining vectors. 

1. Introduction 

Impressive progress has been realised in recent years on the resolution of integrable 
models in statistical mechanics (for reviews see [l-41). 

The underlying mathematical structure that allows all these nice constructions is 
the Yang-Baxter algebra [3,4]: 

R ( e  - e ’ ) [  T (  e )  0 T ( e ’ ) ]  = [ T(  e ’ )@ T (  e ) ] ~ (  e - e’).  
This algebra goes back to the eight-vertex model solved by Baxter [5,6]. The main 
problem is always the construction of transfer matrix eigenvectors and  eigenvalues. 
Very recently a great number of interacting-round-the-face ( IRF)  models with multistate 
spins have been exactly solved ([2,4]). The partition function per site and  the order 
parameters have been explicitly calculated by means of the inversion relation technique 
and the corner transfer matrix. However, there does not exist for the I R F  models a 
formalism similar to the Bethe ansatz construction. The equations that are solved to 
find the integrable cases of the I R F  model are the so-called star-triangle equations [ 11. 
These equations are a consequence of the Yang-Baxter algebra when it is possible to 
find a monodromy matrix for the model in question. This is not the case for the I R F  
model. The algebraic structure (1.1) is not employed and, in consequence, the eigen- 
values and eigenvectors of the model are not known, with the exception of the eigenvalue 
of major modulus in the thermodynamic limit. 

As a consequence of this fact, it is not possible to calculate the finite-size corrections 
for the eigenvalues. These finite-size corrections enable us to evaluate the conformal 
properties of the model in the critical case. 
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However, the I R F  models that have been solved recently are ‘related’ to the symmetric 
eight-vertex model (Baxter model) and to other multistate exactly soluble vertex models. 
This connection can be rigorously established between the vertex models and the 
non-restricted solid-on-solid ( S O S )  models. But the mathematical equivalence is lacking 
in the so-called ‘restriction procedure’ that leads to the more interesting restricted SOS 
models ( RSOS). 

If a rigorous mathematical equivalence could be established between vertex and  
RSOS models, all the known results that have been obtained from the Bethe ansatz 
construction could be translated to the RSOS case. 

It is the aim of this paper to analyse this connection in the more simple situation 
of the critical case. The study of the critical case is sufficient to find the conformal 
properties of the model, and  the mathematical treatment becomes simpler. In the 
critical region of the Baxter model, for example, the elliptic parametrisation has a 
trigonometric limit. 

The fundamental objects in the vertex-IRF connection are the intertwining vectors 
providing the Boltzmann weights of the SOS model from the vertex model R matrix. 
Intertwining vectors are known for the eight vertex models [4-61 and generalisations 
[2] but they are singular in the (critical) trigonometric limit. (We recall that the 
six-vertex model describes the trigonometric (zero-gap) limit of the eight-vertex model.) 

In the present paper, we start by deriving a family of (non-singular) intertwining 
vectors for the six-vertex model. With their help a new set of eigenvectors for the 
six-vertex model is constructed using an  algebraic Bethe ansatz. The corresponding 
Bethe ansatz equations are found. These results are exposed in 9 2 and § 3. Our 
eigenvectors turn out to be labelled in general by a n  integer p with - N / 2  < p < N / 2 ,  
N being the lattice size. When the anisotropy parameter y in the model fulfils 

then p runs from 0 to Q - 1. The ground state belongs to the p = 0 sector. 
The systematic use of the intertwining vectors and  their properties allows us to 

derive a precise connection between vertex and  SOS partition functions for lattices of 
arbitrary size N x M in 0 4. Shown there (equations (4.14) and (4.15)) is the precise 
relation between the partition functions of both models for fixed and  periodic boundary 
conditions ( PBC), respectively. The connection is particularly simple (equation (4.26)) 
when PBC are chosen, except for the spins at the four corners of the lattice. In  that 
case we find that both models have the same central charge since the free energies 
coincide for large size up  to corrections smaller than N-2. We want to stress that the 
results of § 4 hold for any vertex model possessing orthogonal intertwining vectors 
and  not only for six- or eight-vertex models. 

When the intertwining vectors found in § 2 and § 3 are employed to construct the 
Boltzmann weights of the corresponding SOS model we d o  not find the critical limit 
of the eight-vertex SOS model. The obtained statistical weights are in fact the same of 
the six-vertex model, independent of the integer parameter 1 that appears in the 
eight-vertex SOS model [ 6 ] .  In order to overcome this problem, and taking into account 
that the critical eight-vertex model has a continuous symmetry U( 1) that is not present 
in the non-critical case, we have introduced a projector operator to obtain new 
intertwining vectors through a modified definition for them (equation (5 .3)) .  This 
projector operator selects sectors of different charge in the R matrix of the six-vertex 
model. In this way, the resulting S O S  Boltzmann weights are the same as those of the 
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critical limit of the eight-vertex SOS model, with the correct dependence in the integer 
parameter 1. These results are contained in § 5 .  

2. Intertwining vectors 

The intertwining vectors associated with an R-matrix (solution of the Yang-Baxter 
equations) are defined as solutions of 

(2.1) 

where A [  U - U ]  is a c-number function and di( U)( 1 s i s q )  are q-component vectors. 

R ( u  - U ) [ 4 , ( U ) O 4 2 ( t ) l =  A(u - U)[43(U)O44(~)1 

For the six-vertex model ( q  = 2) the R matrix reads 

/ s in(e+y)  o 0 o \  

O I  0 
sin( y)  sin( 6 )  
sin( 6)  sin( y )  

R (  6)  = 

\ O  0 o s i n ( 6 i  y ) /  

where 6 is the spectral parameter and y the anisotropy parameter. Setting 

equation (2.1) yields four linear equations 

sin( u - U + y ) a , b ,  = Ac,d, 

sin(y)a,b,+sin(u -u )a ,b ,  =Ac,d2 

sin(u - u)a,b2+sin(y)a2b, = Ac2d, 

sin(u-u+y)a,b2=Ac,d,. 

Assuming a,  # 0 # b , ,  a, # 0 # b,, we find from (2.4) the solvability condition 

(2.4) 

[z  s in(y)+s in(u-u) ] [s in(y)+z  sin(u-u)] =sin2(u - u + y ) z  (2.5) 
where z =  a , b 2 / ( b , a 2 ) .  Equation (2.5) gives 

(2.6) 
Using once more (2.4) and requiring 4 , ,  44 to depend only on U and c $ ~ ,  43 only on 
U yields 

* i ( 8 + y l  z = e  

where 

and U * ,  b, are constant arbitrary parameters. We have then as a general solution of 
(2.1) for the six-vertex model 

(2.9) R ( u -  u)[X'(u)OX*(u-  y)] =s in (#  - U +  y)[X'(u)OX*(u - y ) ] .  
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There exist two important particular solutions 

W , = ( i )  and w2=(;) (2.10) 

They follow from (2.8) for a = 0 and b = 0 respectively. The reference state in the 
usual Bethe ansatz eigenvectors (see [3,4]) is a tensor product of vectors U (or w ) .  
We construct in 9 3 eigenvectors of the six-vertex model using the intertwining vectors 
(2.8). 

The tensor products X'( u ) O X - ( u  + a) and X - (  u ) O X + (  U + a) fulfil for arbitrary 
a a set of remarkable equations: 

R( U - U ) [ X + (  U )  O x - ( u  + a ) I  
= s i n ( y ) [ X + ( u ) O X - ( u +  a ) ]  

+sin(u - u ) [ X - (  U + a - y ) @ x + (  U + y)] (2.11) 

R( U - u ) [ X - (  u ) O X + (  U + a ) ]  

= sin( y ) [ X - (  u ) O X + ( u  + a ) I  
+sin(u - u ) [ X + ( u +  a - y ) O X - ( u  + y)]. (2.12) 

Since the arguments of the intertwining vectors become shifted by 0 or * y  through 

(2.13) 

the action of R ( u  - U), it is natural to define [6,3] 

X / (  U )  = x- (  U - zy - t )  y , ( u )  = X + ( u  + l y +  s )  

where s and t are arbitrary parameters. Now (2.9), (2.11) and (2.12) yield 

(2.14) 

R ( u  - u ) [ X l ( u ) O  Y k ( u ) ]  = s in ( r ) [X/ (u )O Yk(u) l+s in (u  - U)[ y k - I ( u ) @ x / - I ( ~ ) I  

R ( u  - U)[ Y l ( u ) @ X k ( u ) l =  sin(?)[ Y d u ) O & ( u ) l + s i n ( u  - u ) [ x k + l ( u ) @  K + l ( u ) l .  

(2.15) 

(2.16) 

We want to  make some remarks before constructing eigenvectors of the six-vertex 
model. First, the intertwining vectors introduced by Baxter [6] for the eight-vertex 
model have a singular limit when the elliptic modulus vanishes. This is why we 
construct our vectors directly from the six-vertex R matrix. 

Moreover, (2.9) and (2.14) look almost like eigenvalue equations. Considering the 
S matrix 

s(e) = m ( e )  
where Pab,cd = SadSbc ,  as usual, gives 

S (  U - u) [X' (  U)@ X'( U - r)] = sin( U - U + y ) [ X * (  U - ? ) O X ' (  U)] .  (2.17) 

Hence, the intertwining vectors self-reproduce when S acts on their tensor product 
(up  to a shift * y  in their argument). 
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It must be noticed that in the lattice light-cone approach to vertex models [ 101 one 
finds equations with a similar structure to (2.9), (2.11) and (2.12). In  this context the 
X * (  U )  are particle wavefunctions bearing the peculiar self-reproduction property 
(2.17). 

The intertwining vectors introduced above have a natural adjoint 

and scalar product 

(2.18) 

Notice that X .  Y = - Y * X  and X * X = O .  

R ( u  - v )  through (2.14)-(2.16). 
The intertwining vectors X , ( u ) ,  Y , ( v )  permit to associate an I R F  or SOS model to 

Define 
X , J + ' ( U )  = X , (  U )  x'-,-'( U) = U,( U). (2.19) 

Then (2.14)-(2.16) can be written as 

~ ( u  - ~ ) [ X ' . " ( U ) O X " * " ( U ) ]  =E ~ ( p ,  n, I ,  mlu - U ) [ X ' ~ ~ ( U ) O X ~ ~ " ( U ) ]  (2.20) 
P 

where 1, m, n, p E Z but 11-  m (  = lm - n l =  11 - p (  = [ p  - n (  = 1. The non-trivial coefficients 
W (  p ,  n, m, I1 e)  read 

w ( 1 , 1 r 1 , 1 , 1 * l i e ) = s i n ( 8 + y )  

W(I ,1*1 ,1 ,1*1/8)=s in(y)  (2.21) 

~ ( l * t , l , 1 ~ 1 , 1 j e ) = s i n ( e ) .  

As usual we can define as W (  p ,  n, m, 11 e )  the statistical weight of the faces configur- 
ation depicted in figure 1. The state of each face being defined by the integers, 1, m, 
n etc. Notice that the weights (2.21) are 1 independent. Actually, the usual IRF-vertex 
duality, (see for instance [ 1 I])  applied to the six-vertex model gives weights identical 
to (2.21). This I R F  model is not the trigonometric limit of the SOS model obtained 
from the eight-vertex one through the intertwining vectors of [6]. We shall come back 
to this issue in 3 5 .  

Im-[l= Im - n I = In - p  I = I p - /  I = 1 

Figure I .  A configuration of site bariables round a face of the square lattice and the 
corresponding Boltzmann weights of the SOS model. 
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3. Eigenvectors of the six-vertex model from intertwining vectors 

Let us now construct eigenvectors of the six-vertex model with the help of the 
intertwining vectors (2.8). This will be the trigonometric analogy of the construction 
of [3] for the eight-vertex model. Due to the singular character of the intertwining 
vectors of [3] in the trigonometric limit we start from our vectors (2.8). 

The six-vertex model monodromy matrix reads 

(3.1) 

where [ t , b ( e ) l m , ,  = RmabY ( 6 )  and R ( 0 )  was given in (2.2). A family of gauge-trans- 
formed monodromy matrices follows by replacing 

(3.2) tk",'( 6 u y + [ M i1 / I  act:: ' (  6 uy [ ~k + / -  i 1dh 

in (3.1) or, in a more compact notation, 

Here M is a 2 x 2 matrix 

where the vectors X and Y will be determined below. We have 

where A = det M = X - Y. Therefore, omitting the vertical indices ay,  the gauge trans- 
formation (3.2) yields 

(3.6) 

where MI= M = M k t l r  and notice that each matrix entry in the RHS of (3.6) 
is itself a 2 x 2 matrix acting in the vertical space. For the monodromy matrix associated 
to a line in the lattice, we find 

(3.7) 

Now, in order to build eigenvectors of the transfer matrix it is very helpful to dispose 
of a local vacuum. That is, a vector MI annihilated by the (2.1) element of t :  

[r?rr(e)x],y~, = o  for a = 1,2 .  (3.8) 

~ ' : ( R ( B ) [ X O W ] ) , ,  = o  ff = 1 ,2 .  (3.9) 

This condition can be written as 

The structure of (3.9) suggests that we choose the vectors x and w as intertwining 
vectors of R ( 0 ) .  Since the eigenvectors of T ( e )  can always be made 0 independent, 
it is natural to take 

x = x=(e+ a )  
(3.10) 
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where a is arbitrary. Then (2.9) and (3.9) yield 

sin( 0 + y ) ( X ’  1 X’( 6 - y + a ) ) X ; ( a )  = 0 a = 1, 2 .  

Hence ,acho ice  for X ’ s u c h  that X ’ . X ‘ ( O - y + a ) = O i s  

x’ = x*( e - y + a j. (3.1 1 j 

Since X and X ’  correspond to sites k and k - 1 respectively, we set LY = +( k - / )  y - s 
or + ( k + l j y + r ,  according to the f signs in (3.10) and (3.11): 

x;,+ = XI+,(@) xL,- = Y-/-k(e) (3.12a) 

or 

where we used (2.13) and 1 as an arbitrary integer. 
Now, the diagonal entries of t’( 6 1 acting on the local vacuum M’ yield 

(3.14) 

where w ” =  W k t l . r .  In  order to recast (3.14) in a form analogous to (2.22), we choose 
Y to also be an intertwining vector of the type X + ,  so M is non-singular. Looking 
at (2.14)-(2.16), we can suggest 

( 3 . 1 5 ~ )  Y = x + ( e + [ k + i ] y +  1 )  = YhT/Je) 

(3.1 5 h )  

where w’ and Y’  correspond to the site k - 1. 
Summarising, (3.71, (3.91, (3.13) and (3.16) give 

?: ; ’ (e )&   sin(^+ y ) ~ : , ,  

?;k1(e)Wh,* = sin(0)w:  .,,* 

?::!(e)w:,r = o 
/ 

and 

(3.17) 

(3.20) 
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where, as usual, 

In conclusion, we have constructed two infinite families fl; of local vacua with 
the help of the intertwining vectors of Q 2. Both families of reference vectors fl; give 
equivalent eigenvectors through the algebraic Bethe ansatz construction. In the follow- 
ing we adopt the set 0:. 

Let us now show that the intertwining vectors are not only sufficient but also 
necessary to build the local vacua. Requiring (3.8) for all sites gives 

( . ' . _ ) 2 + ( 3 2 - 2 c 0 s ( y ) -  X 2 . k  - X 2 , k t l  

X l . k + l  X l , k  X 1 . k  

w k  ' 2 . k  e i ~ / 2  

w: - X 1 . k  

- 

Assuming wk to be 8 independent, we find the general solution as 

- exp{i[ e - ( k +  l ) y  - t ] }  X l , k  

X 2 , k  

-- 

(3.21) 

(3.22) 

(3.23) 

where t is an  arbitrary 8-independent parameter and I an  arbitrary integer as before. 
In contrast with the usual local vacua of the six-vertex model, w k  is not an  eigenvector 

of r \ t )  and t:; ' .  However, the action of these operators on w k  can be chosen as simple 
as possible as 

F l l ( @ ) w k -  W k + l  t * 2 2 ( @ ) w k  - w k - 1  (3.24) 

where the symbol - means a proportionality relation. We find, imposing (3.24), the 
following expressions for the matrix M,, : 

(3.25) 

[ O - ( k + I ) y -  r ]  ( k  + I ) y +  s] 

. 

One recognises here the intertwining vectors (3.12) and (3.15). 

useful to consider the transformed monodromy matrix [3] 
Now, in order to build the eigenvectors of the transfer matrix T (  8 )  = T ( ' ) (  8 )  it is 

(3.26) 

The eigenvectors of T ( 6 )  will be constructed by applying products of Bfl,s operators 
on Cl!+. Hence, we need their permutation relations with themselves and with the A , , .  
We find from (3.18) and (3.26) 

A,,,w = A - ' ( @ )  k ( e ) T ( 8 ) X , ( w  

B f l , , ( e ) = A - ' ( 8 ) ~ f l ; , ( e ) T ( e ) Y , ( e )  

C,,,,(e) = A . - ' ( e ) ~ ~ ( e ) T ( e ) x , ( B )  

Dfl.,w = A - ' ( e ) % w )  y , w  

(3.27) 
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where 

A(e )=de t  M l ( 0 ) = ( a - ) ( b + )  exp - ( a+) (b - )exp  i U+- [ ( 'r31 
is 1 independent. By appropriately projecting the Yang-Baxter algebra (1.1) for T(  e )  
on the vectors X , ,  and Y+/ from left and right, we find after some calculations the 
following permutation relations: 

Bk,l+ I ( A  Bk+ I ,/( 0 = Bk,l+ I ( P  ) Bk+ I ,/( A (3.28) 

Ak,l  ( A Bk+ I , I -  I (P = ( A - P ) Bk,/-2 ( P I A A  + 1 . /-  1 ( A  ) - p ( A  - /*. Bk,/- 2 (  A ) Ak + 1 , /-  1 ( @ 
(3.29) 

Dk,l(A )Bk+l./-l ( P  = a ( P  - A Bk+2,/(P) Dk+ I , / -  I ( A  ) -4- p ( A  - P )BkTZ./(A Dk+i,/-l ( P I  
(3.30) 

where 

(3.31) 

These permutation relations have the same structure as those arising from [3] in the 
trigonometric limit except for the coefficient p ( 0 )  that in our case is independent of 
k and 1. This difference is due  to the singular character of the expressions of [3] in 
the trigonometric limit. 

Following the generalised Bethe ansatz, we construct the vector 

This is a symmetric function of A I ,  . . . , A, due to (3.28). Applying to $, the operators 
A l l / (  e )  and repeatdly using the permutation relations (3.29), we obtain 

A I , / ~ I ( A , ) = A , ( A , A , ) $ / - I ( A , ) +  A'~(h,hi)$/-~(hlr...,h,-l, A > A J + I , * * . ~ A ~ )  (3.33) 
J = I  

provided one sets n = N / 2  as in [3]. After commuting A l l /  with all the operators B,+,,/-, 
in (3.32) we obtain A ~ + , , - , ,  which we know how to apply to Cl',' only when n = N / 2  
since, in that case, 

(3.34) 

(3.35) 
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where 

(3.37) 

$I is not an eigenvector of T (  6 )  = In order to obtain such eigenvectors we 
multiply (3.33) and (3.36) by ellp where O S  p <277 and sum for all integers. One finds 
in this way 

d A ) C D P ( A , )  = [e’”,l,(A, A , )  +e-’PA2(A, A, ) l$p (A l )  

+ 

n + c 1 e“P[e’PA:(h ,A, )+e- ’PAJz(A,  A , ) ] $ l ( A l , .  . . , A J - , ,  A, A,,,, .  . . , A , ) .  

(3.38) 
l € H  J - 1  

Here 

@,.,(Al,. . . , A,,)= c e””th(A0. (3.39) 
I S Z  

As can be seen from (3.38), $ , < ( A , )  is an eigenvector of T ( A )  with eigenvalue 

A(A)  =eIPAI(A, A,)+e-’”A2(A, A , )  

provided the A ,  satisfy the following equations: 

(sinh(pj+iy/2)) r\i - - -e-21P fi sinh(p/-pk+iY) (3.40) 

where p, = iA, + iy/2. In this way the unwanted terms cancel in (3.37). These Bethe 
ansatz equations (BAE)  coincide with the trigonometric limit of the BAE of [3]. However, 
the reference states Cl:, and gauge-transformed matrices & ! ( A )  used to build the 
eigenvectors in [3] are singular in that limit. It is hard to cancel these singularities in 
order to find well defined eigenvectors in the six-vertex limit. We preferred in this 
paper to build the reference vectors and gauge-transformed monodromy matrices free 
of singularities, working directly in the six-vertex model. 

As is already the case in the eight-vertex model [3] the values of p in the eigenvectors 
(3.39) are not arbitrary. They must be determined by requiring that the RHS of (3.38) 
be non-zero. 

Let us now derive the allowed values of p in the six-vertex model for arbitrary y. 
This is much simpler here, since the eigenvectors contain only exponential functions 
and not elliptic ones as in the eight-vertex case. In order to obtain the allowed values 
of p it is necessary to analyse the explicit dependence of the right-hand side of (3.38) 
on the integer parameter 1. As can be seen from the expression (3.32), the 1 dependence 
of I,!+ comes from the factors Bl+,,l-J(A,) and w:.  

The 1 dependence of Bl+J,l-,(A,) is determined from the second of the equations 
(3.27). We have 

Bl+J,l-,(A,) = b+a,exp[i(A, + s +  yj)]A+ b t  exp[-i(A, + s +  ly)]B 

sinh(pJ - iy/2) k = l  sinh(p,-pk-iY) 

-a: exp[i(A, + s + l y ) ] C  - b+a+ exp[i(A, + s - yJ)]D (3.41) 
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where a, and b, are independent of 1, and A, E, C,  D are the components of the 
monodromy matrix ( 3 . 1 ) .  On the other hand, is given by (3.12) (the equation 
corresponding to the sign +) and (2.13), i.e. 

(3.42) 

with a- and b- independent of 1. 
After replacing (3.42) in (3.19) and (3.41) in (3.32), the dependence on 1 of 

follows easily. The components of this vector are linear combinations of terms of the 
form elpy', where p takes the values - N / 2 S p S  N/2. In consequence, taking into 
account (3.39), and after performing the sum over all the integer values of 1, the 
resulting expression of +, is a linear combination of terms of the form S ( p  -py) ,  where 
6(x) is Dirac's delta function. Therefore, in order to have non-zero eigenvectors, the 
parameter p must be take the values 

P =PY - N / 2 6 p S  N / 2 .  (3.43) 

The allowed values of p proposed in [3] yield to equation (3.43) in the trigonometric 
limit. Therefore, our proof supports the arguments of [3] for the elliptic case. In the 
six-vertex limit, this parametrisation becomes trigonometric, and it is this mathematical 
simplication that enables us to obtain the allowed values of p in equation (3.39). 

The connection between the present construction of the six-vertex eigenvectors and  
the usual one is a hard mathematical problem. It will be treated in a subsequent paper 
[201. ~~ 

U p  to now, we have considered generic values of the parameter y in the discussion. 
Let us investigate the special case when y is 2n- times a rational number 

y = 2 r Q ' /  Q. (3.44) 

Here Q' and  Q are positive integers. In this case all the objects previously introduced 
become periodic or antiperiodic functions of their discrete indices, with period Q. 
That is 

(3.45) 

Now, the restriction 2n = N (equation (3 .33 ) )  is relaxed. We see that in order to have 
an  eigenvector it is enough that 

2 n = N + P Q  where PEZ. (3.46) 

Then, we find from (3.20) and (3.45) 

A,,,,-,(e)fl{;" =(.-1)'"'  s inN(O+ y ) R k N - '  (3.47) 
and an  analogous formula for D/+,,-,, . In addition, (3.45) shows that in the sum (3.38) 
we can restrict 1 to a period Q. Then, p must be such that 

1 e i Q ~  = 
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t,bp(Al, .  . . , A,,) be an eigenvector. That is 

q = o , .  . . , Q - 1  2 “9 
P = Q  

In the present case (3.43) requires 
q = @‘(mod Q )  with Is1 < N/2.  

(3.48) 

(3.49) 

Therefore the allowed values of q are those integers between 0 and Q - 1 fulfilling 
also (3.49). 

The BAE are now written 

where y = 2rm/Q, the Zj are half-integers and 2n = N(mod Q). 
In the generic case (3.40) the BAE are 

N / 2  

/ =  I 
N4(pj, Y/2)= C ~ ( C C , - C L / ,  Y)+2P+2rzj (3.51) 

where 
s inh(z+ia)  
sinh(z-ia) 

+ ( z ,  a )  = i log (3.52) 

both in (3.49) and (3.50). 
Eigenvectors of the X X Z  Hamiltonian of the type (3.48) have been found in [12] 

using the coordinate Bethe ansatz for the special case (3.44). 
Equations (3.40) are a system of algebraic equations in the variables xj= 

e2”J( 1 s j  s N/2)  of degree 3 N / 2  for all p # 0. Therefore, they possess a richer set of 
roots than the usual BAE. We have found in simple examples that the states given by 
(3.32)-( 3.40) reproduce all eigenvectors of T( 6). Besides, the eigenvectors associated 
to the extra roots of (3.40) (absent in the usual B A E )  vanish. This suggests that the 
T( 6) eigenspace corresponding to the ordinary BA and our construction (equations 
(3.32)-(3.40)) are the same. A detailed analysis is reported in [20]. 

We want to stress that B A E  like (3.40) appear in different frameworks. They differ 
from the usual B A E  in the extra phase p which is j independent. One finds those B A E  

when eigenvectors of modified six-vertex transfer matrices [ 131 

TP(  6) = eip A( 6)  +e-ip D( 6)  (3.53) 
are calculated using the usual Bethe ansatz (common eigenstates of .,,(e) and Sz). 
This transfer matrix .,(e) can be interpreted as a vertex model with quasiperiodic 
boundary conditions 

(T;+~ *ia%+, =e*‘p(a- ;~ ia . l ’ ) .  (3.54) 
Furthermore, BAE like (3.40) follow when local gauge transformations are performed 
in the X X Z  chain [14]. Moreover, we derive (3.40) in P 3 in a still different physical 
situation. They describe a new basis of eigenvectors of the usual transfer matrix 

T( e)  = A( 6 )  + B (  e). 
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This 7( e )  corresponds to periodic boundary Conditions. We want to stress the remarkable 
fact that the same set of (3.40) describe very different problems. 

In the case of twisted boundary conditions the phase p is fixed precisely by the 
chosen boundary conditions (3.54). In contrast, in our eigenvector construction the 
phase p varies, labelling the different sectors of the PBC 7( 0 )  eigenspace. Now p = p y  
with Ipl< N/2 and p E Z. The integer p labels here different sets of eigenvectors of 
T ( 0 ) .  That is, p characterises sectors in the eigenvector space of T ( 0 ) .  The ground 
state belongs to the p = 0 sector. In the N =CO limit the effect of p disappears from 
the eigenvalues. 

4. The connection between vertex models and SOS models 

Let us consider a vertex model in a rectangular lattice N x M with vertex weights as 
in figure 2. The partition function for periodic boundary conditions can be written as 

(4.1) 

corresponds to the partition function of the vertex model with fixed boundary condi- 
tions, specified by a', y', a and y, as in figure 3. In (4.2) we assume 

A o j  = ai, A M j  = aj for 1 < j <  N and 

(4.3) 

with U,,= y and uN = y'. The matrix T,,( 8 ) r i r s  is the monodromy matrix associated 
to a single horizontal line of the lattice, as depicted in figure 4. 

Let us now connect the partition function of the SOS model defined by the weights 
W ( l l ,  1 2 ,  1 3 ,  I,le) (figure 1) with ZV,eZ" when the SOS weights relate to the R matrix 
through the intertwining vectors (equation (2.20)). We have for the SOS partition 
function with periodic boundary conditions 

~ k z ( u - v ) =  1 Z ( m l J l m l u - u )  (4.4) 
l s Z N  

m c Z M  

R 

Figure 2. The arrangement of the bond variables round a vertex of the lattice and the 
elements of the R matrix. 
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Gl 
. . .  

, T 

I 

. , I  

T '  

* .  . 
i 

/; /; /;i 
Figure 5. An SOS model formulated on a finite N x M square lattice with fixed boundary 
conditions, specified by the set of spin variables /, I ' ,  m, m' .  
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where 1 = ( l 1 , .  . . , I N ) ,  m = ( m l , .  . . , m,) and Z(m' f ' l1mlu-U)  stands for the SOS 

partition function with fixed boundary conditions as depicted in figure 5 .  It can be 
written as 

(4.5) 

where p1 = 1, p M + l =  f ' ,  pi,l = m : ,  
transfer matrix defined by 

= m, for 1 s is M and r ( p l p ' / O )  is the SOS 

(4.6) 

where p'  labels the lower line of faces and p the upper one, as in figure 6. 

one. 
In all cases the indices associated with neighbouring faces differ by plus or minus 

Figure 6. Two successive rows of the square lattice showing the spin variables associated 
with the various sites. 

In order to relate zNM(e)""'" with ZNM(6)SoS let us apply ~(yala'y'lu- U )  to 
the following tensor product of intertwining vectors: 

Z(yala 'y ' ju  - U)X'"'( v ly ' )X'"(  u l a ' ) .  
P ' . Y '  

(4.7) 

Here, 

X " ) ( u / a ) =  x p ( u ) x g q u ) .  . . xk.;'*+l(u) 

x'"'(u~y)~x~,,"'(U)X~~m~(u). . . XmM.mM+l Y V  0 U (4.8) 
where 

I N + ,  MI and If, - l + , I  = lm, - mI+,l = 1 

as usual. The sum over a' and y' can be performed by repeatedly using (2.19). In 
this way at each vertex of figure 2, the sum over two bond indices yields a sum over 
a face index of weights w. We finally obtain 

Z ( y a l a ' y ' l u  - u ) X ( " ( u ~ y ' ) X " ' ( u ~ c ' )  
" , Y '  

(4.9) 

where 
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Now, in the last step we use the orthogonality relations for the intertwining vectors 

and A"/'( U )  = ( I  - I')A( U )  with ) I  - 1'1 = 1 and 

A(u)=a+b_exp{i[u+(s-t)/2]}-a_b+exp{-i[u+(s-t)/2]}.  

By analogy with (4.9) we define 

= j Q y q u ) i ; ; m + J ) .  . . i;$.;+l(U) 

jp)( ula)  2y;( u)x2;/q U )  , . . X5K$+l( w ) .  

Finally, we get from (4.9) using (4.10) and (4.13) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Z(m' l ' l lmlu  - u )  = C ~ ' " ' ( a ~ y ) R " " ( u ~ a ~ ~ ( ~ a ~ a ~ ~ ~ ~ ~  - u ) ~ ( " ( , l , ' ) ~ ' " ( u l a ' ) .  
on'yy' 

(4.14) 

This is the relation between SOS and vertex partition functions for fixed boundary 
conditions. Setting I = I ' ,  m = m' and summing over I and m in (4.14) yields 

zy$(u -U) = E  i ( m J ( U ( y ) 2 ( ' ) ( u ,  a)Z(ya(cu'y ' lu - , )X"'(uly')X"'(u, a'). 
Im a ,o ' ,y ,y '  

(4.15) 

We want to stress that (4.14) and (4.15) follow just from the fundamental relation 
between the R matrix and the SOS weights (2.19), and the orthogonality relations (4.10). 
They hold also for more general models like the eight-vertex, the Belavin model and 
others [2]. Equation (4.15) has also been obtained in [17]. As can be seen from (4.19, 
the relation between the partition function of the SOS model with periodic boundary 
conditions, and the partition function of the corresponding vertex model is, at first 
sight, very complicated. 

On the right-hand side of (4.15), the boundary conditions of the vertex model are 
very unusual. A cumbersome procedure, involving products and sums with intertwining 
vectors, must be performed in order to obtain, on the left-hand side, the partition 
function of the SOS model with periodic boundary conditions. 

However, if we impose other types of boundary conditions on the SOS model, a 
much more simple relation between the partition functions is obtained. We will impose 
periodic boundary conditions for all the boundary spins of the SOS model on an N x M 
lattice, with the exception of the four spins in the corners of the lattice. 

As can be seen from figure 5, we will have in that case 

1 2 =  I;, I 3 =  I ; ,  * .  . , IN = I "  

(4.16) 
m 2 =  m i ,  m 3 =  m i , .  . . , mM = m h  

I ,  f m ,  m l #  mM+l 
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Now, taking into account (4.16), we perform the sum in equation (4.14) over all the 
boundary spins m, m', 1 and l ' ,  except for the four spins I , ,  m , ,  1: and m M + , .  

On the left-hand side we obtain the partition function of the SOS model 
Z( I , ,  m , ,  l i ,  m M + , ) ,  with the almost-periodic boundary conditions described above, 
and with fixed spins I , ,  l i ,  m , ,  ntM+l on the corners. Of course, the configurations of 
the boundary spins must satisfy the condition 

11, -41  = 1 (4.17) 

where i, j indicates a pair of nearest-neighbour sites in the horizontal or vertical 
directions. On the right-hand side of (4.14), a great simplification occurs when the 
sum described above is performed. 

Let us consider, in particular, the sum over two nearest-neighbour spins I ,  and l,+, 
on the boundary of the lattice and with i f 1. For each pair l , ,  I , + ,  there are four factors 
in (4.14) containing these spin variables. 

Let us exhibit these factors explicitly: 

(4.18) 

Where we have taken into account the expressions given in (4.8) and (4.13). The 
condition (4.17) enables us to introduce the variables T i - ,  and T , ,  which take the values 
-1  and 1 ,  as follows: 

I, - 11-, = r 7 - l  1 , + ,  - I ,  = U , .  

(U)Xd,.1, (U)XU, x If ; I 4 - 1  +U, - I 

In this way, (4.18) can be written as 

(4.19) A /,,/,+q ( u ) x , , + l  (U). +U, A , _ I .  / , - l+u,- ,  2 e, 
U,-I .U, 

As can be easily verified from the definition of the M matrix (3.4), we have 

Map(u)  = XY+P(U) [ M - l ] , p ( U )  = 2 ; + . ( u >  (4.20) 

where a, p = il and M is the 2 x 2 matrix defined in (3.4). Therefore, (4.19) can be 
expressed as 

c Mo;,u, I ( 24 1 Me;* I ,Vi ( U )r M - I ,  ., ,e, ( U )[ - I=,,,, + l  ( U 1 = &;,,, ' (4.21) 

When one of the two nearest-neighbour spins is in a corner of the lattice, the result 
of this type of sum is different from (4.21). If, for instance, i - 1 = 1 we have 

U ,  - I .U, 

Now, by introducing the variables 

(4.22) can be written as 

(4.22) 

(4.23) 

Using (4.20), the sum over r2 can be performed to give a factor ~ 3 ~ : , ~ , .  However, as 
a consequence of the fact that lI  f 1'1, there is no such simplification in the sum over 7 , .  
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(4.24) 

Similar results are obtained for the other corners of the lattice. It must be stressed 
that in order to have the simplifications occurring in (4.21) it is not possible to impose 
periodic boundary conditions. In that case we would have, for the first row of figure 
5, with m, = I ,  

U, = l2 - I ,  
U2 = I ,  - 12 

(4.25) 

U N - , =  IN - l N - ,  

but the variable T~ = I ,  -1, is not independent. It is fixed by the relations (4.25). In 
consequence, the equation (4.21) cannot be applied in that case. 

This is the reason why we have chosen the almost-periodic boundary conditions 
(4.16). Taking into account (4.21) and (4.24) for each corner of the lattice, the equation 
obtained from (4.14) after the sum over all the boundary spins with the exception of 
the corner ones, is 

zSos(l1, I ; ,  M1, mM+I) 
(4.26) 

This relation between the partition functions of both models is simpler by far than 
(4.15). In (4.15) the number of intertwining vectors that appear in the product of the 
right-hand side is 2( N + M ) .  In contrast, in (4.26) this number is 8, independently of 
the size of the lattice. In particular, the partition function of the vertex model on the 
right-hand side of (4.26) has also periodic boundary conditions, with the exception of 
the comers of the lattice. Let us now consider the case M -f 00 and N large but finite. 
In the evaluation of the finite-size corrections of the eigenvalues of both models, the 
different types of boundary conditions in the corners of lattice will give a contribution 
much smaller than I /  N 2 .  This yields the conformal properties ofthe models. Therefore, 
as consequence of equation (4.26), the conformal properties like the central charge of 
the vertex model and the associated SOS model will be the same for arbitrary values 
of the parameter y .  

5. SOS models and the six-vertex model; charge projector formalism 

In 0 2 we used intertwining vectors to derive an I R F  model from the six-vertex model. 
The weights thus obtained were I independent and actually identical to those of the 
six-vertex model. We shall see now how richer I R F  models arise from the six-vertex 
model, taking into account the presence of the U( 1)-conserved charge in the six-vertex 
model. We recall that the eight-vertex model enjoys a discrete Z , O Z ,  symmetry that 
enlarges to U(l)@Z,  in the critical limit. 

The six-vertex R matrix commutes with the charge projectors Po 

[ R ( O ) ,  PQI = 0 Q=0,*1  (5.1) 
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where 
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0 0 

.-I=(' A 1. (5.2) 

Therefore one can look for intertwining vectors in each charged sector 

R (  U - u)PQ[ X P (  U )  @ X E l (  U)] = A ( U - u ) P Q [ X P (  U )  0 XP,i(u)] (5.3) 
where X ? ( U )  are two-component vectors. For Q = * l ,  equation (5.3) has the solutions 

X j + ' ( u )  = (A) Q = +1 

X ; ' ( u )  = ( Y )  Q = -1 
(5.4) 

with the same I R F  weight 

A (  U - U )  = sin(u - U +  y) .  ( 5 . 5 )  

The case Q = 0 has richer structure. We find the solution 

sin( U - Iy - t )  

with the same I R F  weight (5.5). In addition, the vector 

sin( U + k y +  s) 
(5.7) 

sin( y){sin @+sin[ 8 - ( I +  k - l ) y  - s - t ] }  
sin[( I +  k - 1 ) y  + s + t ]  

% + / ( @ )  = - 

sin( @){sin( y )  + sin[( k + I )y  + s + t ] }  
sin[( I + k - 1 ) y  + s + t ]  P h - / ( @ )  = 

s in (y ){s in (@)+s in [@+(I+k+  l ) y +  t i s ] }  

sin[( I +  k + 1) y + t + s ]  & + / ( e )  = 

(5 .9 )  

sin(@){sin[(k+ I ) y + s +  t]-sin(y)} 
sin[( I +  k + 1 ) y  + s + t ]  

p h + / ( @ )  = 
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Equations (5.6)-(5.8) can be recast in a canonical form analogous to (2.19): 

R ( u  - u ) P ~ [ X " " ( U ) O X " . " ( U ) ]  

=C ~ ( p ,  n, 1, mlu - V ) P , [ X ' ~ ~ ( ( U ) O X P , " ( U ) ]  
P 

where 

X / J + I (  U )  = X , ( u )  

W(1, I *  1, I +  1,  I )  = sin(@+ y )  

x'.'-'( U )  = Y/( U )  

W ( l - - 1 , 4 4 1 + 1 ) = P z / + l  

and the weights W(p, n, 1, mle) are given by 

(5.10) 

W ( l + l ,  l , l ,Z+ l )=a2 /+1  w ( l + l , l , l , l - l ) = ~ 2 , ~ l  (5.11) 

W(Z- l , l , l ,Z - l )=& I-,. 

In this way, an I R F  model with 1-dependent weights arises from the six-vertex R 
matrix. The weights (5.1 1 )  can be transformed, by gauge transformations, in the critical 
limit of the ABF (elliptic) weights (the partition function being the same). This gauge 
transformation can be expressed as 

F (  1, m')F(  I ,  Z') 
F( l', m ) F (  m', m )  

W(Z, m',  I ' ,  m )  = W(I, m', I ' ,  m )  

with 

F(1, m )  = F ( m ,  I )  

and 

(5.12) 

(5.13) 

This I R F  model and the six-vertex model can also be connected by the q-analogue 
of the Clebsch-Gordan coefficients [ 181, and using appropriately generalised intertwin- 
ing vectors [19]. We find from (5.11)-(5.13) the weights 

W(1, l i  ~ , Z T  1 ,  / le) =sin(@+ y )  

(5.14) 

sin( y )  sin[ l y  + wo F e] 
sin( Iy + wo)  

w ( I * 1 , ( 1 ,  I * 1 1 e )  = 

where wo = ( s +  t ) / 2 .  It is easy to check that (5.14) is the critical limit of the SOS and 
RSOS weights of ABF [ 8 ] .  
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